Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Neurosci Res ; 102(4): e25327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588037

RESUMO

Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.


Assuntos
Canabidiol , Cocaína , Camundongos , Animais , Masculino , Canabidiol/farmacologia , Canabidiol/metabolismo , Glucose/metabolismo , Fluordesoxiglucose F18/metabolismo , Encéfalo/metabolismo , Cocaína/farmacologia , Camundongos Endogâmicos C57BL
2.
Reprod Toxicol ; 125: 108563, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417581

RESUMO

Studies have suggested associations between gestational exposure to caffeine and adverse outcomes, however the evidence is still limited. Therefore, a systematic review was conducted to investigate the association between prenatal caffeine exposure and neurobehavioral disorders. The MEDLINE (PubMed), EMBASE, Scopus, Web of Science, and LILACS databases were searched. Observational studies involving women with documented caffeine consumption during pregnancy were eligible for inclusion. The outcomes evaluated were behavioral and intellectual development, Attention Deficit Hyperactivity Disorder, and related behaviors. The data were analyzed by qualitative synthesis. The ROBINS-I tool was employed to assess the risk of bias, and the certainty of evidence was evaluated using GRADE (PROSPERO: CRD42023421164). The search yielded fourteen studies that met the inclusion/exclusion criteria. The sample size among pregnant women ranged from 173 to 64,189, and among children ranged from 88 to 49,190. Maternal caffeine consumption during pregnancy ranged from 0 to 1000 mg/day, with the highest levels observed during mid-pregnancy. Seven studies indicated a potential association between prenatal caffeine exposure and neurobehavioral/neurodevelopment deficits, one study showed that prenatal caffeine exposure improved peer problems, and six studies did not show a significant effect of prenatal caffeine consumption on neurobehavioral disorders. The included studies were classified as moderate for the risk of bias and with very low certainty of evidence. Thus, the evidence is insufficient to confirm with certainty that the prenatal caffeine exposure leads to neurobehavioral disorders. Studies heterogenicity, as well as their variable quality and the presence of several confounding factors, generate uncertainty.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Cafeína , Criança , Humanos , Gravidez , Feminino , Cafeína/efeitos adversos , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia
3.
Reprod Toxicol ; 117: 108342, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758879

RESUMO

Studies suggest that gestational exposure to lead (Pb) is related to spontaneous abortions, preterm birth, lower infant birth weight and length, and neurological dysfunctions. However, the evidence about its effects during pregnancy exposure on fetal and child development is still poor. Thus, the aim of this systematic review was to verify the association between prenatal exposure to Pb and the occurrence of neurobehavioral deficits, miscarriages, and child mortality. Observational studies with pregnant women exposed to Pb during pregnancy were included, without gender or ethnicity restrictions. The MEDLINE, Cochrane Library, EMBASE, Scopus, Web of Science, and LILACS databases were searched. The reading of titles and abstracts was conducted, followed by reading in full format and data extraction, that were performed independently by two reviewers. The included studies were evaluated by Downs and Black tool and qualitatively synthesized. Certainty of evidence was assessed by Grading of Recommendations Assessment, Development, and Evaluations (GRADE). The study protocol was registered with the Prospective Registry of Systematic Reviews (PROSPERO; CRD42022296750). Among twenty-one studies included, sixteen were classified as prospective cohort, two case-control, one nested case-control, one cohort, and one longitudinal study. No study that evaluated child mortality associated with gestational Pb exposure was found. There is a very low certainty of evidence in the association of gestational Pb exposure and neurobehavioral deficits or miscarriages. This systematic review reflects the poor evidence and the challenges of human toxicology studies, since it was not possible to associate gestational Pb exposure to neurobehavioral deficits, miscarriages, and child mortality.


Assuntos
Aborto Espontâneo , Nascimento Prematuro , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Desenvolvimento Infantil , Chumbo/toxicidade , Estudos Longitudinais
4.
Neurotox Res ; 40(6): 1653-1663, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36342586

RESUMO

Excessive levels of dopamine in the synaptic cleft, induced by cocaine for example, activates dopaminergic receptors, mainly D1R, D2R, and D3R subtypes, contributing to neurotoxic effects. New synthetic 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine derivatives (the LINS01 compounds), designed as histaminergic receptor (H3R) ligands, are also dopaminergic receptor ligands, mainly D2R and D3R. This study aims to evaluate the neurotoxicity of these new synthetic LINS01 compounds (LINS01003, LINS01004, LINS01011, and LINS01018), as well as to investigate their protective potential on a cocaine model of dopamine-induced neurotoxicity using SH-SY5Y cell line culture. Neurotoxicity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and automated cell counting with fluorescent dyes (acridyl orange and propidium iodide) assays. Concentration-response curves (CRCs) were performed for all LINS compounds and cocaine using MTT assay. The results show that LINS series did not decrease cell viability after 48h of exposure-except for 100 µM LINS01018, which was discontinued from the study. Likewise, MTT, LDH, and fluorescent dyes staining showed no difference is cell viability for LINS compounds at 10 µM. When incubated with 2.5 mM cocaine (lethal concentration 50) for 48h, 10 µM of each LINS compound, metoclopramide (D2R antagonist) and haloperidol (D2R/D3R antagonist), ameliorated cocaine-induced neurotoxicity. However, only metoclopramide, haloperidol, and LINS01011 compound significantly decreased LDH released in the culture medium, suggesting that this new synthetic compound presents a more robust effect. This preliminary in vitro neurotoxicity study suggests that LINS01 compounds are not neurotoxic, and that they play a promising role in preventing cocaine-induced neurotoxicity.


Assuntos
Cocaína , Neuroblastoma , Humanos , Cocaína/toxicidade , Dopamina , Haloperidol/farmacologia , Metoclopramida , Piperazina , Corantes Fluorescentes , Técnicas de Cultura de Células
5.
Int J Dev Neurosci ; 82(8): 759-771, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36018565

RESUMO

Nicotine has been used during pregnancy and lactation as a tobacco harm reduction strategy. However, it is unclear whether nicotine exposure during a critical development period negatively impacts stress responses in adulthood. This study investigated how nicotine, administered via breastfeeding, affects the brain-derived neurotrophic factor (BDNF), synaptic proteins levels, and anxiety-like behavior in adult female mice subjected to stress. Female Swiss mice were exposed to saline or nicotine (8 mg/kg/day) through breastfeeding between their fourth and 17th postnatal days (P) via implanted osmotic mini pumps. The unpredictable chronic mild stress (UCMS) protocol was performed during their adulthood (P65) for 10 consecutive days, followed by the elevated plus maze (EPM) test 1 day after the protocol. Animals were euthanized and their blood, collected for plasma corticosterone measurements and their brain structures, dissected for BDNF and synaptic proteins analyses. We found no significant differences in corticosterone levels between groups (Saline/Non-stress, Nicotine/Non-stress, Saline/Stress, and Nicotine/Stress). The UCMS protocol hindered weight gain. Mice exposed to nicotine through breastfeeding with or without the UCMS protocol in adulthood showed higher grooming and head dipping frequency; decreased BDNF levels in cerebellum and striatum; increased postsynaptic density protein 95 (PSD-95), synapsin I, and synaptophysin levels in cerebellum; and decreased PSD-95 and synapsin I levels in brainstem. Our results indicate that nicotine exposure through breastfeeding leads to long-lasting behavioral effects and synaptic protein changes, most of which were independent of the UCMS protocol, even after a long nicotine-free period, highlighting the importance of further studies on nicotine exposure during development.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Corticosterona , Gravidez , Animais , Camundongos , Feminino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapsinas/metabolismo , Encéfalo/metabolismo , Nicotina , Estresse Psicológico
6.
Behav Brain Res ; 416: 113546, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34437939

RESUMO

Alcohol use disorder needs more effective treatments because relapse rates remain high. Psychedelics, such as ayahuasca, have been used to treat substance use disorders. Our study aimed to evaluate the effects of ayahuasca on ethanol-induced behavioral sensitization (EIBS). Swiss mice received 2.2 g/kg ethanol or saline IP injections every other day across nine days (D1, D3, D5, D7, and D9), and locomotor activity was evaluated 10 min after each injection. Then, animals were treated daily with ayahuasca (corresponding to 1.76 mg/kg of N,N-dimethyltryptamine, DMT) or water by oral gavage for eight consecutive days. On the seventh day, mice were evaluated in the elevated plus maze. Then, mice were challenged with a single dose of ethanol to measure their locomotor activity. Dopamine receptors, serotonin receptors, dynorphin, and prodynorphin levels were quantified in the striatum and hippocampus by blot analysis. Repeated ethanol administration resulted in EIBS. However, those animals treated with ayahuasca had an attenuated EIBS. Moreover, ayahuasca reduced the anxiogenic response to ethanol withdrawal and prevented the ethanol-induced changes on 5-HT1a receptor and prodynorphin levels in the hippocampus and reduced ethanol effects in the dynorphin/prodynorphin ratio levels in the striatum. These results suggest a potential application of ayahuasca to modulate the neuroplastic changes induced by ethanol.


Assuntos
Banisteriopsis/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Bebidas , Etanol/farmacologia , Alucinógenos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Alucinógenos/administração & dosagem , Masculino , Camundongos
7.
Arch Toxicol ; 95(5): 1779-1791, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674969

RESUMO

Crack cocaine users are simultaneously exposed to volatilized cocaine and to its main pyrolysis product, anhydroecgonine methyl ester (AEME). Although the neurotoxic effects of cocaine have been extensively studied, little is known about AEME or its combination. We investigated cell death processes using rat primary hippocampal cells exposed to cocaine (2 mM), AEME (1 mM) and their combination (C + A), after 1, 3, 6 and 12 h. Cocaine increased LC3 I after 6 h and LC3 II after 12 h, but reduced the percentage of cells with acid vesicles, suggesting failure in the autophagic flux, which activated the extrinsic apoptotic pathway after 12 h. AEME neurotoxicity did not involve the autophagic process; rather, it activated caspase-9 after 6 h and caspase-8 after 12 h leading to a high percentage of cells in early apoptosis. C + A progressively reduced the percentage of undamaged cells, starting after 3 h; it activated both apoptotic pathways after 6 h, and was more neurotoxic than cocaine and AEME alone. Also, C + A increased the phosphorylation of p62 after 12 h, but there was little difference in LC3 I or II, and a small percentage of cells with acid vesicles at all time points investigated. In summary, the present study provides new evidence for the neurotoxic mechanism and timing response of each substance alone and in combination, indicating that AEME is more than just a biological marker for crack cocaine consumption, as it may intensify and hasten cocaine neurotoxicity.


Assuntos
Cocaína/análogos & derivados , Animais , Cocaína/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Hipocampo , Neurônios , Síndromes Neurotóxicas , Pirólise , Ratos
8.
Mol Cell Biochem ; 476(4): 1849-1859, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33469821

RESUMO

Luteolin is a flavonoid with antioxidant properties already demonstrated in studies related to inflammation, tumor, and cardiovascular processes; however, there are no available information regarding its antioxidant effects at the venous endothelial site. We investigated the effects of luteolin (10, 20, and 50 µmol/L) in cultures of rat venous endothelial cells. Nitric oxide (NO) and reactive oxygen species (ROS) were analyzed by fluorimetry; 3-nitrotyrosine (3-NT) residues were evaluated by immunofluorescence, and prostacyclin (PGI2) release was investigated by colorimetry. Intracellular NO levels were significantly enhanced after 10 min of luteolin incubation, with a parallel decrease in ROS generation. These results were accompanied by a significant reduction in the expression of 3-NT residues and enhanced PGI2 rates. Therefore, luteolin is effective in reducing ROS thereby improving NO availability in venous endothelial cells. Besides, luteolin-induced decrease in 3-NT residues may correlate with the enhancement in endothelial PGI2 bioavailability. These findings suggest the future application of this flavonoid as a protective agent by improving endothelial function in several circulatory disorders related to venous insufficiency.


Assuntos
Antioxidantes/farmacologia , Endotélio Vascular/metabolismo , Luteolina/farmacologia , Veias Cavas/metabolismo , Animais , Óxido Nítrico/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
Toxicol Rep ; 6: 1223-1229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31768333

RESUMO

Crack cocaine smokers inhale, alongside with cocaine, its pyrolysis product, anhydroecgonine methyl ester (AEME). We have previously described AEME neurotoxic effect and its additive effect when co-incubated with cocaine. Our aim was to evaluate, the effect of AEME, cocaine and AEME-cocaine combination on glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activities after 3 and 6 h of exposure, periods previous to neuronal death. Lipid peroxidation was evaluated through malonaldehyde (MDA) levels at 3, 6, 24 and 48 h of exposure. All treated groups reduced neuronal viability after 24 h of exposure. AEME and cocaine decreased GPx, GR and GST activities after 3 and 6 h, with an increase in MDA levels after 48 h. AEME-cocaine combination decreased the enzymes activities after 3 and 6 h, showing an additive effect in MDA levels after 48 h. These data show that the glutathione-related enzymes imbalance caused by AEME, cocaine or AEME-cocaine combination exposure preceded neuronal death and lipid peroxidation. Moreover, the additive effect on lipid peroxidation observed with AEME-cocaine exposure after 48 h, suggest a higher neurotoxic effect after crack cocaine use when compared to cocaine alone.

10.
Brain Res ; 1707: 99-106, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30465752

RESUMO

Although environmental tobacco smoke (ETS) is mainly associated to cardiorespiratory disease, clinical and preclinical studies have showed that ETS induces behavioral disorders and deleterious effects in the brain. Our aim was to investigate the effects of ETS during the early postnatal period on locomotor activity and anxiety and in the presynaptic proteins and brain-derived neurotrophic factor (BDNF) in distinct brain regions. BALB/c mice were exposed to ETS generated from 3R4F reference research cigarettes from the third to the fourteenth days of life. Behavioral and biochemical analyzes were performed during infancy, adolescence, and adulthood. ETS exposure induced a decrease in the locomotor activity in both female and male mice during infancy and in male mice during adolescence. Mice exposed to ETS showed lower distance traveled in the open arms of the elevated plus maze than control group. We also observed a decrease in synapsin levels in the cerebellum and striatum during infancy and adolescence, which persisted during the adulthood only in the cerebellum. Synaptophysin levels were low in all brain regions studied during the infancy, which remained reduced in the cerebellum and prefrontal cortex during adolescence and in the prefrontal cortex during adulthood. BDNF levels were reduced in the striatum and prefrontal cortex during infancy. These behavioral and biochemical data indicate that exposure to ETS during a critical development period leads to anxiety-like behavior and blunted synaptic proteins levels in different regions of the brain. More important, several of these effects were not reversed even after a long exposure-free period.


Assuntos
Ansiedade/etiologia , Corpo Estriado/efeitos dos fármacos , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Animais Recém-Nascidos , Ansiedade/induzido quimicamente , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/análise , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nicotina/farmacologia
11.
Toxicol Rep, v. 6, p. 1223-1229, nov. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2871

RESUMO

Crack cocaine smokers inhale, alongside with cocaine, its pyrolysis product, anhydroecgonine methyl ester (AEME). We have previously described AEME neurotoxic effect and its additive effect when co-incubated with cocaine. Our aim was to evaluate, the effect of AEME, cocaine and AEME-cocaine combination on glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activities after 3 and 6h of exposure, periods previous to neuronal death. Lipid peroxidation was evaluated through malonaldehyde (MDA) levels at 3, 6, 24 and 48h of exposure. All treated groups reduced neuronal viability after 24h of exposure. AEME and cocaine decreased GPx, GR and GST activities after 3 and 6h, with an increase in MDA levels after 48h. AEME-cocaine combination decreased the enzymes activities after 3 and 6h, showing an additive effect in MDA levels after 48h. These data show that the glutathione-related enzymes imbalance caused by AEME, cocaine or AEME-cocaine combination exposure preceded neuronal death and lipid peroxidation. Moreover, the additive effect on lipid peroxidation observed with AEME-cocaine exposure after 48h, suggest a higher neurotoxic effect after crack cocaine use when compared to cocaine alone.

12.
Toxicol. Rep. ; 6: 1223-1229, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17275

RESUMO

Crack cocaine smokers inhale, alongside with cocaine, its pyrolysis product, anhydroecgonine methyl ester (AEME). We have previously described AEME neurotoxic effect and its additive effect when co-incubated with cocaine. Our aim was to evaluate, the effect of AEME, cocaine and AEME-cocaine combination on glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activities after 3 and 6h of exposure, periods previous to neuronal death. Lipid peroxidation was evaluated through malonaldehyde (MDA) levels at 3, 6, 24 and 48h of exposure. All treated groups reduced neuronal viability after 24h of exposure. AEME and cocaine decreased GPx, GR and GST activities after 3 and 6h, with an increase in MDA levels after 48h. AEME-cocaine combination decreased the enzymes activities after 3 and 6h, showing an additive effect in MDA levels after 48h. These data show that the glutathione-related enzymes imbalance caused by AEME, cocaine or AEME-cocaine combination exposure preceded neuronal death and lipid peroxidation. Moreover, the additive effect on lipid peroxidation observed with AEME-cocaine exposure after 48h, suggest a higher neurotoxic effect after crack cocaine use when compared to cocaine alone.

13.
Toxicology ; 376: 44-50, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129946

RESUMO

Crack cocaine has a high potential to induce cocaine addiction and its smoke contains cocaine's pyrolysis product anhydroecgonine methyl ester (AEME), a partial agonist at M1- and M3-muscarinic acetylcholine receptor and an antagonist at the remaining subtypes. No reports have assessed AEME's role in addiction. Adult male Wistar rats were intraperitoneally administered with saline, 3mg/kg AEME, 15mg/kg cocaine, or a cocaine-AEME combination on every other day during a period of 9 days. After a 7-days withdrawal period, a challenge injection of the respective drugs was performed on the 17th day. The locomotor activity was evaluated on days 1, 3, 5, 7, 9 and 17, as well as dopamine levels (9th day) and dopaminergic receptors proteins (D1R and D2R on the 17th day) in the caudate-putamen (CPu) and nucleus accumbens (NAc). AEME was not able to induce the expression of behavioral sensitization, but it substantially potentiates cocaine-effects, with cocaine-AEME combination presenting higher expression than cocaine alone. An increase in the dopamine levels in the CPu in all non-saline groups was observed, with the highest levels in the cocaine-AEME group. There was a decrease in D1R protein level in this brain region only for cocaine and cocaine-AEME groups. In the NAc, an increase in the dopamine levels was only observed for cocaine and cocaine-AEME groups, with no changes in both D1R and D2R protein levels. These behavioral and neurochemical data indicate that AEME alone does not elicit behavioral sensitization but it significantly potentiates cocaine effects when co-administered, resulting in dopamine increase in CPu and NAc, brain regions where dopamine release is mediated by cholinergic activity.


Assuntos
Cocaína/análogos & derivados , Cocaína/administração & dosagem , Cocaína/metabolismo , Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sinergismo Farmacológico , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Wistar , Receptores Dopaminérgicos/metabolismo
14.
Toxicol Res (Camb) ; 6(4): 420-431, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090510

RESUMO

Anhydroecgonine methyl ester (AEME), also called methylecgonidine, is a pyrolysis product of crack cocaine that is neurotoxic and potentiates cocaine-induced sensitization. The sensitization induced by drugs of abuse can be influenced by melatonin, a neuroprotective pineal hormone. In the same way, drugs of abuse like alcohol and methamphetamine can modify melatonin synthesis. The aim of the present work was to investigate the AEME effects on melatonin synthesis in the rat pineal gland. Neurotransmitter systems involved in its effects, antioxidant enzyme activities and the melatonin protective role in AEME-induced toxicity were also evaluated. The animals were injected with AEME i.p. (1.12 mg per kg of body weight per day) or vehicle for 10 consecutive days and the nocturnal pineal melatonin synthesis profile and SOD, GPx and GR activities in the cerebral cortex and hippocampus were assessed. Cultured pineal glands were incubated with AEME for 30 min or 48 h before norepinephrine stimulation and melatonin synthesis, arylalkylamine N-acetyltransferase activity, cAMP and [Ca2+]i were determined. The involvement of cholinergic and glutamatergic systems was analyzed using different antagonists. The protective role of melatonin in AEME toxicity on hippocampal neurons was evaluated by a viability assay. AEME impaired melatonin synthesis both in vivo and in vitro and this effect seems to be mediated by muscarinic receptors and [Ca2+]i elevation. AEME reduced neuronal viability and melatonin was able to protected hippocampal neurons against AEME toxicity. The melatonin synthesis impairment observed could lead to the worsening of the direct AEME neurotoxicity and to the exacerbation of the crack cocaine addiction and sensitization.

15.
Toxicology ; 376: 44-50, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15482

RESUMO

Crack cocaine has a high potential to induce cocaine addiction and its smoke contains cocaine's pyrolysis product anhydroecgonine methyl ester (AEME), a partial agonist at M-1- and M-3-muscarinic acetylcholine receptor and an antagonist at the remaining subtypes. No reports have assessed AEME's role in addiction. Adult male Wistar rats were intraperitoneally administered with saline, 3 mg/kg AEME, 15 mg/kg cocaine, or a cocaine-AEME combination on every other day during a period of 9 days. After a 7-days withdrawal period, a challenge injection of the respective drugs was performed on the 17th day. The locomotor activity was evaluated on days 1, 3, 5, 7, 9 and 17, as well as dopamine levels (9th day) and dopaminergic receptors proteins (D1R and D2R on the 17th day) in the caudate-putamen (CPu) and nucleus accumbens (NAc). AEME was not able to induce the expression of behavioral sensitization, but it substantially potentiates cocaine-effects, with cocaine-AEME combination presenting higher expression than cocaine alone. An increase in the dopamine levels in the CPu in all non-saline groups was observed, with the highest levels in the cocaine-AEME group. There was a decrease in D1R protein level in this brain region only for cocaine and cocaine-AEME groups. In the NAc, an increase in the dopamine levels was only observed for cocaine and cocaine-AEME groups, with no changes in both D1R and D2R protein levels. These behavioral and neurochemical data indicate that AEME alone does not elicit behavioral sensitization but it significantly potentiates cocaine effects when co-administered, resulting in dopamine increase in CPu and NAc, brain regions where dopamine release is mediated by cholinergic activity.

16.
Toxicol. Res. ; 6(4): 420-431, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15125

RESUMO

Anhydroecgonine methyl ester (AEME), also called methylecgonidine, is a pyrolysis product of crack cocaine that is neurotoxic and potentiates cocaine-induced sensitization. The sensitization induced by drugs of abuse can be influenced by melatonin, a neuroprotective pineal hormone. In the same way, drugs of abuse like alcohol and methamphetamine can modify melatonin synthesis. The aim of the present work was to investigate the AEME effects on melatonin synthesis in the rat pineal gland. Neurotransmitter systems involved in its effects, antioxidant enzyme activities and the melatonin protective role in AEME-induced toxicity were also evaluated. The animals were injected with AEME i.p. (1.12 mg per kg of body weight per day) or vehicle for 10 consecutive days and the nocturnal pineal melatonin synthesis profile and SOD, GPx and GR activities in the cerebral cortex and hippocampus were assessed. Cultured pineal glands were incubated with AEME for 30 min or 48 h before norepinephrine stimulation and melatonin synthesis, arylalkylamine N-acetyltransferase activity, cAMP and [Ca2+]i were determined. The involvement of cholinergic and glutamatergic systems was analyzed using different antagonists. The protective role of melatonin in AEME toxicity on hippocampal neurons was evaluated by a viability assay. AEME impaired melatonin synthesis both in vivo and in vitro and this effect seems to be mediated by muscarinic receptors and [Ca2+]i elevation. AEME reduced neuronal viability and melatonin was able to protected hippocampal neurons against AEME toxicity. The melatonin synthesis impairment observed could lead to the worsening of the direct AEME neurotoxicity and to the exacerbation of the crack cocaine addiction and sensitization.

17.
Sci Rep ; 5: 17555, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26626425

RESUMO

The smoke of crack cocaine contains cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). AEME possesses greater neurotoxic potential than cocaine and an additive effect when they are combined. Since atropine prevented AEME-induced neurotoxicity, it has been suggested that its toxic effects may involve the muscarinic cholinergic receptors (mAChRs). Our aim is to understand the interaction between AEME and mAChRs and how it can lead to neuronal death. Using a rat primary hippocampal cell culture, AEME was shown to cause a concentration-dependent increase on both total [(3)H]inositol phosphate and intracellular calcium, and to induce DNA fragmentation after 24 hours of exposure, in line with the activation of caspase-3 previously shown. Additionally, we assessed AEME activity at rat mAChR subtypes 1-5 heterologously expressed in Chinese Hamster Ovary cells. l-[N-methyl-(3)H]scopolamine competition binding showed a preference of AEME for the M2 subtype; calcium mobilization tests revealed partial agonist effects at M1 and M3 and antagonist activity at the remaining subtypes. The selective M1 and M3 antagonists and the phospholipase C inhibitor, were able to prevent AEME-induced neurotoxicity, suggesting that the toxicity is due to the partial agonist effect at M1 and M3 mAChRs, leading to DNA fragmentation and neuronal death by apoptosis.


Assuntos
Cocaína/análogos & derivados , Hipocampo/metabolismo , Síndromes Neurotóxicas/metabolismo , Neurotoxinas/toxicidade , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células CHO , Cocaína/toxicidade , Cricetinae , Cricetulus , Fragmentação do DNA/efeitos dos fármacos , Feminino , Hipocampo/patologia , Síndromes Neurotóxicas/patologia , Ratos , Fatores de Tempo
18.
São Paulo; s.n; s.n; 2014. 154 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-836922

RESUMO

O crack é a forma fumada de administração da cocaína com o maior potencial para causar dependência. Até 80% da sua fumaça consiste no produto de pirólise da cocaína, a metilecgonidina (AEME). Apesar do vasto conhecimento acerca dos efeitos e prejuízos causados pela cocaína, nenhum trabalho avaliou os efeitos da AEME na farmacodependência, objetivo deste trabalho. Ratos adultos machos Wistar foram expostos à salina, à AEME 3 mg/kg, à cocaína 15 mg/kg e a associação entre cocaína e AEME, intraperitonealmente, em duas situações: 1) exposição prolongada (administração todos os dias, por 9 dias); 2) sensibilização comportamental dependente de contexto (administração em dias alternados, por 5 dias e 7 dias de abstinência, seguido do desafio). A dose de AEME foi definida pela avaliação da atividade locomotora em teste agudo. A AEME foi capaz de aumentar a atividade locomotora após exposição prolongada e potencializar a expressão da sensibilização comportamental dependente de contexto induzida pela cocaína. A concentração de dopamina e seus metabólitos aumentaram no caudado-putâmen em todos os grupos, sendo observado um sinergismo entre cocaína e AEME no grupo da associação. No núcleo accumbens, foi observado aumento de dopamina apenas nos grupos cocaína e associação. Paralelamente, houve aumento da relação p-CREB/CREB 60 minutos após a administração aguda de AEME 3 mg/kg e cocaína 15 mg/kg, tanto no caudado-putâmen quanto no núcleo accumbens, assim como nos grupos cocaína e associação após a sensibilização comportamental dependente de contexto. Com a finalidade de determinar o mecanismo de ação da AEME, foi realizado um estudo farmacológico detalhado dessa substância em células CHO-K1 de rato expressando heterologamente os receptores colinérgicos muscarínicos subtipos 1 a 5, uma vez que estudos anteriores sugeriram uma interação entre a AEME e os receptores colinérgicos muscarínicos. O ensaio de competição com [3H]NMS mostrou uma pequena preferência da AEME para o subtipo M2. Estudos funcionais (mobilização de cálcio) revelaram um efeito agonista parcial da AEME para os subtipos M1 e M3 e antagonista para os demais subtipos, dando suporte à hipótese colinérgica de ação da AEME. Nossos resultados indicam que a AEME isoladamente não foi capaz de causar sensibilização, mas potencializou a ação da cocaína quando coadministrada. O efeito antagonista da AEME em receptores subtipo M2 e M4 no caudado-putâmen, e M4 e M5 no núcleo accumbens causaram aumento de dopamina nessas regiões encefálicas, onde a atividade colinérgica medeia sua liberação


Crack cocaine is the smoked form of cocaine with the highest potential for addiction. Up to 80% of crack smoke consists of cocaines pyrolysis product anhydroecgonine methyl ester (AEME). Despite of many studies regarding cocaine effects and its hazardousness, few reports have assessed AEME's role in addiction, the aim of this study. Adult male Wistar rats were i.p. dosed with either saline, 3 mg/kg AEME, cocaine 15 mg/kg, or cocaine-AEME combination in two situations: 1) prolonged exposure (drugs administered every day for 9 days); 2) behavioral sensitization context specific (drugs administered in alternating days for 5 days, followed by 7-days abstinence period and a challenge injection). AEME dose was chosen based on locomotor activity after an acute test. AEME increased locomotor activity in the prolonged exposure and it potentiated cocaine-induced behavioral sensitization. Dopamine level and its metabolites were elevated in the caudate-putamen in all non-saline groups with a synergic effect between cocaine and AEME in the cocaine-AEME group. In the nucleus accumbens, dopamine was elevated only in cocaine and cocaine-AEME groups. At the same time, p-CREB/CREB ratio, increased 60 minutes after an acute administration of 3 mg/kg AEME and 15 mg/kg cocaine in both caudate-putamen and nucleus accumbens, the same result observed in both cocaine and cocaine-AEME groups after behavioral sensitization. Once previous studies suggested AEME interacts with muscarinic acetylcholine receptors, a detailed pharmacological analysis of AEME at rat muscarinic acetylcholine receptors subtypes 1-5 heterologously expressed in CHO-K1 cells was performed to determine a mechanism for the novel effects of AEME. [3H]NMS competition binding showed a slight preference for M2 subtype; functional studies (Ca2+ mobilization) revealed partial agonist effects at M1 and M3 and antagonist effects at the remaining subtypes, supporting the cholinergic hypothesis of AEME's effects. Our results indicate AEME alone does not elicit behavior sensitization but significantly potentiates cocaine sensitization when co-administered. AEME antagonism effects at M2 and M4 muscarinic acetylcholine receptors subtypes in the caudate-putamen, and M4 and M5 muscarinic acetylcholine receptors subtypes in the nucleus accumbens resulted in dopamine increase in these brain regions, where its release is mediated by cholinergic activity


Assuntos
Animais , Masculino , Ratos , Pirólise/efeitos adversos , Cocaína Crack/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/psicologia , Aspartame , Cocaína Crack/toxicidade , Ratos Wistar
19.
Toxicol Sci ; 128(1): 223-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22523227

RESUMO

Smoking crack cocaine involves the inhalation of cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). Although there is evidence that cocaine is neurotoxic, the neurotoxicity of AEME has never been evaluated. AEME seems to have cholinergic agonist properties in the cardiovascular system; however, there are no reports on its effects in the central nervous system. The aim of this study was to investigate the neurotoxicity of AEME and its possible cholinergic effects in rat primary hippocampal cell cultures that were exposed to different concentrations of AEME, cocaine, and a cocaine-AEME combination. We also evaluated the involvement of muscarinic cholinergic receptors in the neuronal death induced by these treatments using concomitant incubation of the cells with atropine. Neuronal injury was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The results of the viability assays showed that AEME is a neurotoxic agent that has greater neurotoxic potential than cocaine after 24 and 48 h of exposure. We also showed that incubation for 48 h with a combination of both compounds in equipotent concentrations had an additive neurotoxic effect. Although both substances decreased cell viability in the MTT assay, only cocaine increased LDH release. Caspase-3 activity was increased after 3 and 6 h of incubation with 1mM cocaine and after 6 h of 0.1 and 1.0mM AEME exposure. Atropine prevented the AEME-induced neurotoxicity, which suggests that muscarinic cholinergic receptors are involved in AEME's effects. In addition, binding experiments confirmed that AEME has an affinity for muscarinic cholinergic receptors. Nevertheless, atropine was not able to prevent the neurotoxicity produced by cocaine and the cocaine-AEME combination, suggesting that these treatments activated other neuronal death pathways. Our results suggest a higher risk for neurotoxicity after smoking crack cocaine than after cocaine use alone.


Assuntos
Cocaína/análogos & derivados , Hipocampo/efeitos dos fármacos , Animais , Células Cultivadas , Cocaína/toxicidade , Feminino , Hipocampo/citologia , Imuno-Histoquímica , Gravidez , Quinuclidinil Benzilato/metabolismo , Ensaio Radioligante , Ratos , Ratos Wistar , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA